Введение в, программирование, язык программирования, основы, операционная система
учебники, программирование, основы, введение в,

 

Стандартные сегменты Fast Ethernet

Аппаратура 100BASE-TX
Стандарт Fast Ethernet IEEE 802.3u появился значительно позже стандарта Ethernet – в 1995 году. Его разработка в первую очередь была связана с требованием повышения скорости передачи информации. Однако переход с Ethernet на Fast Ethernet позволяет не только повысить скорость передачи, но и существенно отодвинуть границу перегрузки сети (что обычно гораздо важнее). Поэтому популярность Fast Ethernet постоянно растет.
Вместе с тем надо учитывать, что стандартные сегменты Fast Ethernet имеют свои особенности и недостатки, которые далеко не очевидны, но которые обязательно надо учитывать. Создатели Fast Ethernet сделали все возможное для облегчения перехода на новую скорость, однако, в каком-то смысле Fast Ethernet – это уже другая, новая сеть.
Если сравнивать набор стандартных сегментов Ethernet и Fast Ethernet, то главное отличие – полный отказ в Fast Ethernet от шинных сегментов и коаксиального кабеля. Остаются только сегменты на витой паре и оптоволоконные сегменты.
Стандарт 100BASE-TX определяет сеть с топологией пассивная звезда и использованием сдвоенной витой пары.
Схема объединения компьютеров в сеть 100BASE-TX практически ничем не отличается от схемы по стандарту 10BASE-T. Однако, в этом случае необходимо применение кабелей с неэкранированными витыми парами (UTP) категории 5 или выше, что связано с требуемой пропускной способностью кабеля. В настоящее время это самый популярный тип сети Fast Ethernet.
Для присоединения кабелей так же, как и в случае 10BASE-T используются 8-контактные разъемы типа RJ-45. Длина кабеля так же не может превышать 100 метров (стандарт, правда, рекомендует ограничиваться длиной сегмента в 90 метров, чтобы иметь 10-процентный запас).Так же используется топология пассивная звезда с концентратором в центре. Только сетевые адаптеры должны быть Fast Ethernet, и концентратор должен быть рассчитан на подключение сегментов 100BASE-TX. Именно поэтому рекомендуется даже при установке сети 10BASE-T прокладывать кабель категории 5.
Из восьми контактов разъема RJ-45 используется только 4 контакта: два для передачи информации (TX+ и TX-) и два для приема информации (RX+ и RX-). Передача производится дифференциальными сигналами. Для передачи используется код 4В/5В, такой же, как в сети FDDI, что позволяет снизить частоту изменения сигналов по сравнению с манчестерским кодом. Это уже серьезный шаг в сторону от первоначального стандарта IEEE 802.3.
Стандарт предусматривает также возможность применения экранированного кабеля с двумя витыми парами проводов (волновое сопротивление – 150 Ом). В этом случае должен применяться 9-контактный экранированный разъем DB-9, он же разъем STP IBM типа 1, такой же, как в сети Token-Ring. Назначение контактов этого разъема приведено в.


Таблица 12.1. Назначение контактов разъема типа RJ-45

Контакт

Назначение

Цвет провода

1

TX+

Белый/оранжевый

2

TX-

Оранжевый/белый

3

RX+

Белый/зеленый

4

Не используется

5

Не используется

6

RX-

Зеленый/белый

7

Не используется

8

Не используется

Таблица 12.2. Назначение контактов разъема DB9

Контакт

Назначение

Цвет провода

1

RX+

Оранжевый

2

Не используется

3

Не используется

4

Не используется

5

TX+

Красный

6

RX–

Черный

7

Не используется

8

Не используется

9

TX–

Зеленый

Как и в случае 10BASE-T, в сети 100BASE-TX могут использоваться два типа кабеля: прямой и перекрестный. Для соединения двух компьютеров без применения концентраторов используется стандартный перекрестный (crossover) кабель. А для связи компьютера с концентратором применяется прямой (direct) кабель с соединенными между собой одинаковыми контактами разъемов. Если перекрестное соединение предусмотрено внутри концентратора, то соответствующий порт его должен быть помечен буквой «X».Здесь все точно так же, как и в случае 10BASE-T.
Для контроля целостности сети в 100BASE-TX предусмотрена передача в интервалах между сетевыми пакетами специальных сигналов (FLP– Fast Link Pulse). Но в отличие от 10BASE-T выполняют также функцию автоматического согласования скорости передачи аппаратных средств (Auto-Negotiation). Об этом автоматическом согласовании будет рассказано в разделе «Автоматическое определение типа сети».

http://localhost:3232/img/empty.gifhttp://localhost:3232/img/empty.gifАппаратура 100BASE-T4

Основное отличие аппаратуры 100BASE-T4 от 100BASE-TX состоит в том, что передача производится не по двум, а по четырем неэкранированным витым парам (UTP). При этом кабель может быть менее качественным, чем в случае 100BASE-TX (категории 3, 4 или 5). Принятая в 100BASE-T4 система кодирования сигналов обеспечивает ту же самую скорость 100 Мбит/с на любом из этих кабелей, хотя стандарт рекомендует, если есть такая возможность, все-таки использовать кабель категории 5.
Схема объединения компьютеров в сеть ничем не отличается от 100BASE-TX . Компьютеры присоединяются к концентратору по схеме пассивной звезды. Длина кабелей точно так же не может превышать 100 метров (стандарт и в этом случае рекомендует ограничиваться 90 метрами для 10-процентного запаса).
Как и в случае 100BASE-TX, для подключения сетевого кабеля к адаптеру (трансиверу) и к концентратору используются 8-контактные разъемы типа RJ-45. Но в данном случае задействованы уже все 8 контактов разъема. Назначение контактов разъемов представлено в.


Таблица 12.3. Назначение контактов разъема типа RJ-45 для сегмента 100BASE-T4

Контакт

Назначение

Цвет провода

1

TX_D1+

Белый / оранжевый

2

TX_D1–

Оранжевый / белый

3

RX_D2+

Белый / зеленый

4

BI_D3+

Голубой / белый

5

BI_D3–

Белый / голубой

6

RX_D2–

Зеленый / белый

7

BI_D4+

Белый / коричневый

8

BI_D4–

Коричневый / белый

TX – передача данных, RX – прием данных,
BI – двунаправленная передача
Обмен данными идет по одной передающей витой паре, по одной приемной витой паре и по двум двунаправленным витым парам с использованием трехуровневых дифференциальных сигналов.
Для связи двух компьютеров без применения концентраторов используется перекрестный кабель. В обычном же прямом кабеле, применяемом для связи компьютера с концентратором, соединены одноименные контакты обоих разъемов. Схемы кабелей приведены на. Если перекрестное соединение предусмотрено внутри концентратора, то соответствующий порт должен помечаться буквой «Х». Здесь все точно так же, как в случае 100BASE-TX и 10BASE-T.
Для реализации передачи информации со скоростью 100 Мбит/с по кабелю с малой полосой пропускания (категории 3) в сегменте 100BASE-T4 используется оригинальный принцип кодирования информации, называющийся 8В/6Т. Его идея состоит в том, что 8 бит, которые надо передать, преобразуются в 6 тернарных (трехуровневых с уровнями -3,5 В, +3,5 В и 0 В) сигналов, которые затем передаются за два такта по трем витым парам. При шестиразрядном трехзначном коде общее число возможных состояний равно 36 = 729, что больше, чем 28 = 256, то есть никаких проблем из-за уменьшения количества разрядов не возникает. В результате по каждой витой паре передается информация со скоростью 25 Мбит/с, то есть требуется полоса пропускания всего 12,5 МГц . Дополнительно сигналы, передаваемые в кабель, кодируются по методу MLT-3.
Для передачи информации одновременно используются две двунаправленные витые пары (BI_D3 и BI_D4) и одна однонаправленная (TX_D1 или RX_D2). Четвертая витая пара, не участвующая в передаче информации (TX_D1 или RX_D2) применяется для обнаружения коллизий.
Для контроля целостности сети в 100BASE-T4 также предусмотрена передача специального сигнала FLP между сетевыми пакетами. Наличие связи индицируется светодиодами «Link». Сигналы FLP также используются для автоматического согласования скоростей передачи (см. раздел «Автоматическое определение типа сети»)
Аппаратура 100BASE-FX
Применение оптоволоконного кабеля в сегменте 100BASE-FX позволяет существенно увеличить протяженность сети, а также избавиться от электрических наводок и повысить секретность передаваемой информации.
Аппаратура 100BASE-FX очень близка к аппаратуре 10BASE-FL. Точно так же здесь используется топология пассивная звезда с подключением компьютеров к концентратору с помощью двух разнонаправленных оптоволоконных кабелей.
Между сетевыми адаптерами и кабелями возможно включение выносных трансиверов. Как и в случае сегмента 10BASE-FL, оптоволоконные кабели подключаются к адаптеру (трансиверу) и к концентратору с помощью разъемов типа SC, ST или FDDI. Для присоединения разъемов SC и FDDI достаточно просто вставить их в гнездо, а разъемы ST имеют байонетный механизм.
Максимальная длина кабеля между компьютером и концентратором составляет 412 метров, причем это ограничение определяется не качеством кабеля, а установленными временными соотношениями. Согласно стандарту, применяется мультимодовый или одномодовый кабель с длиной волны света 1,35 мкм. В последнем случае потери мощности сигнала в сегменте (в кабеле и разъемах) не должны превышать 11 дБ. При этом надо учитывать, что потери в кабеле составляют 1—2 дБ на километр длины, а потери в разъеме – от 0,5 до 2 дБ (при условии, что разъем установлен качественно).
Как и в других сегментах Fast Ethernet, в 100BASE-FX предусмотрен контроль целостности сети, для чего в промежутках между сетевыми пакетами по кабелю передается специальный сигнал. Целостность сети индицируется светодиодами «Link».
Используемый метод кодирования – 4В/5В (как и в сегменте 100BASE-TX), что позволяет довольно просто осуществлять сопряжение этих двух сегментов (иногда они даже объединяются в единый стандарт 100BASE-X). Дополнительное кодирование – NRZI.

http://localhost:3232/img/empty.gifhttp://localhost:3232/img/empty.gifАвтоматическое определение типа сети (Auto-Negotiation)

Функция автоматического определения типа сети (или скорости передачи), предусмотренная стандартом Ethernet, не является обязательной. Однако ее реализация в сетевых адаптерах и концентраторах позволяет существенно облегчить жизнь пользователям сети. Особенно это важно на современном этапе, когда широко применяются как ранняя версия Ethernet со скоростью обмена 10 Мбит/с, так и более поздняя версия Fast Ethernet со скоростью 100 Мбит/с.
Функция автодиалога или автосогласования (так можно перевести Auto-Negotiation) позволяет адаптерам, в которых предусмотрено переключение скорости передачи, автоматически подстраиваться под скорость обмена в сети, а концентраторам, в которых предусмотрен автодиалог, самим определять скорость передачи адаптеров, подключенных к их портам. При этом пользователь сети не должен следить за тем, на какую скорость обмена настроена его аппаратура: система сама выберет максимально возможную скорость.
Сразу следует отметить, что режим автодиалога применяется только в сетях на основе сегментов, использующих витые пары: 10BASE-T, 100BASE-TX и 100BASE-T4. Для сегментов на базе коаксиального кабеля и оптоволоконного кабеля, автодиалог не предусмотрен. Шинные сегменты на коаксиальном кабеле не дают возможности двухточеченой связи, поэтому в них невозможно попарное согласование абонентов. А в оптоволоконных сегментах применяется другая система служебных сигналов, передаваемых между пакетами.
Автодиалог основан на использовании сигналов, передаваемых в Fast Ethernet, которые называются FLP (Fast Link Pulse) по аналогии с сигналами NLP (Normal Link Pulse), применяемыми в сегментах 10BASE-T. Так же, как и NLP, сигналы FLP начинают вырабатываться с включением питания соответствующей аппаратуры (адаптера или концентратора) и формируются в паузах между передаваемыми сетевыми пакетами, поэтому они никак не влияют на загрузку сети. Именно сигналы FLP и передают информацию о возможностях подключенной к данному сегменту аппаратуры.
Так как аппаратура 10BASE-T разрабатывалась до создания механизма автодиалога, для автоматического определения типа сети необходимо обрабатывать не только сигналы FLP, но и NLP. Это также предусмотрено в аппаратуре, поддерживающей автодиалог. Естественно, в такой аппаратуре, как правило, заложена возможность отключения режима автодиалога, чтобы пользователь сам мог задать режим работы своей сети.
Помимо уже упоминавшихся сегментов 10BASE-T, 100BASE-TX и 100BASE-T4 автодиалог обеспечивает обслуживание так называемых полнодуплексных (full duplex) сегментов сети Ethernet (10BASE-T Full Duplex) и сети Fast Ethernet (100BASE-TX Full Duplex).
Рассмотрим особенности полнодуплексного режима передачи.
Как уже упоминалось, связь между абонентами бывает трех основных видов:

  • симплексная (всегда только в одну сторону),
  • полудуплексная (по очереди то в одну сторону, то в другую),
  • полнодуплексная (одновременно в две стороны).

Классический Ethernet использует полудуплексную связь: по его единственному кабелю в разное время может проходить разнонаправленная информация. Это позволяет легко реализовать обмен между большим количеством абонентов, но требует сложных методов доступа к сети (CSMA/CD).
Полнодуплексная версия Ethernet гораздо проще. Она предназначена для обмена только между двумя абонентами по двум разнонаправленным кабелям, причем передавать могут оба абонента сразу, одновременно. Два преимущества такого подхода понятны сразу:

  • не требуется никакого механизма доступа к сети,
  • в идеале пропускная способность полнодуплексной линии связи оказывается вдвое выше, чем при полудуплексной передаче.

Режим полного дуплекса гораздо сложнее реализовать технически, поэтому полнодуплексные версии Ethernet и Fast Ethernet находятся все еще на стадии стандартизации, единых правил обмена пока не выработано, и аппаратура разных производителей может основываться на разных принципах обмена. Тем не менее, автодиалог уже ориентирован на их распознавание и использование.
При проведении автодиалога применяется таблица приоритетов , в которой полнодуплексные версии имеют более высокие приоритеты, чем классические полудуплексные, так как они более быстрые. Выбирается версия с максимально возможным для обоих абонентов приоритетом.


Таблица 12.4. Приоритеты автодиалога

Приоритет

Тип сети

1

100BASE-TX Full Duplex

2

100BASE-T4

3

100BASE-TX

4

10BASE-T Full Duplex

5

10BASE-T

1 – высший приоритет, 5 – низший приоритет
Из таблицы следует, что если, например, аппаратура на обоих концах сегмента поддерживает обмен с двумя скоростями, например, в режимах 10BASE-T и 100BASE-TX, то в результате автодиалога будет выбран режим 100BASE-TX, как имеющий больший приоритет (обеспечивающий большую скорость).
Автодиалог предусматривает также разрешение ситуаций, когда на одном конце кабеля подключена двухскоростная аппаратура, а на другом– односкоростная. Например, если двухскоростной адаптер присоединен к концентратору 10BASE-T, в котором не предусмотрена возможность автодиалога, то он не будет получать сигналы FLP, а только NLP. В результате действия механизма автодиалога адаптер будет переключен в режим концентратора 10BASE-T. Точно так же, если двухскоростной концентратор присоединен к односкоростному адаптеру 100BASE-TX, не рассчитанному на автодиалог, то концентратор перейдет в режим адаптера 100BASE-TX. Этот механизм одностороннего определения типа сети называется параллельным детектированием (Parallel Detection).
В любом случае, автодиалог не может обеспечить большей скорости, чем самый медленный из компонентов сети. Таким образом, если к репитерному концентратору, в котором имеется функция автодиалога, подключены два адаптера: односкоростной 10BASE-T и двухскоростной (10BASE-T и 100BASE-TX), то вся сеть будет настроена на работу по стандарту 10BASE-T, так как никакого накопления информации и никакой ее обработки в репитерном концентраторе не предусмотрено. Присоединение к такому концентратору двух неперестраиваемых (односкоростных) адаптеров с разными скоростями делает сеть неработоспособной. Иногда в конструкции репитеров предусматривается автоматическое отключение портов, к которым присоединены неперестраиваемые низкоскоростные (10BASE-T) адаптеры. Некоторые концентраторы (самые сложные) могут автоматически перекоммутировать порты таким образом, чтобы сегменты со скоростью 10 Мбит/с обменивались информацией только между собой, а сегменты со скоростью 100 Мбит/с –между собой.
Помимо собственно определения типа сети и выбора максимально возможной скорости обмена автодиалог обеспечивает и некоторые дополнительные возможности. В частности, он позволяет определять, почему нарушилась связь в процессе работы, а также обмениваться информацией об ошибках. Для передачи этой дополнительной информации используется тот же самый механизм, что и для основного автодиалога, но только после того, как установлен тип сети и скорость передачи. Данная функция называется «функцией следующей страницы» (Next Page function).
Обмен информацией при автодиалоге производится посылками (пакетами) FLP-импульсов, которыми кодируется 16-битное слово. Каждая посылка содержит от 17 до 33 импульсов, идентичных импульсам NLP, которые используются в 10BASE-T. Посылки имеют длительность около 2 мс и передаются с периодом 16,8 мс.
Для кодирования битов в FLP применяется следующий код. В начале каждого битового интервала передается импульс. В середине бита, соответствующего логической единице, передается еще один импульс. В середине бита, соответствующего логическому нулю импульса нет. Этот код иллюстрируется. В начале посылки передается стартовый нулевой бит, именно поэтому общее количество импульсов в посылке FLP может изменяться в пределах от 17 до 33.
Обмен информацией при автодиалоге осуществляется 16-битными словами, называемыми LCW (Link Code Word), с форматом, представленным на.
Пятиразрядное поле селектора (Selector Field) определяет один из 32 возможных типов стандарта сети. В настоящее время для него используется только два кода: код 00001 соответствует стандарту IEEE 802.3, а код 00010 – IEEE 802.9.
Восьмиразрядное поле технологических особенностей (Technology Ability Field) определяет тип сети в пределах стандарта, заданного битами поля селектора. Для стандарта IEEE 802.3 пока что определены пять типов, которые представлены в.
Бит удаленной ошибки RF (Remote Fault) позволяет передавать информацию о наличии ошибок. Бит подтверждения Ack (Acknowledge) используется для подтверждения получения посылки. Наконец, бит следующей страницы NP (Next Page) говорит о поддержке функции следующей страницы, о том, что абонент собирается передавать еще и дополнительную информацию в следующем слове.
В автодиалоге используется специально разработанный протокол с многократным подтверждением принятия посылок. В случае если автодиалог происходит между абонентами 1 и 2, последовательность действий абонентов будет такой.

  1. Абонент 1 передает свою посылку (LCW) с неустановленным (равным нулю) битом Ack.
  2. Абонент 2 в ответ начинает передавать последовательные ответные посылки (LCW).
  3. Когда абонент 1 получает три последовательные посылки от абонента 2 (бит Ack при этом игнорируется), он передает посылку с установленным (равным единице) битом Ack (подтверждает правильный прием LCW от абонента 2).
  4. Абонент 2 продолжает передавать свои LCW с установленным битом Ack.
  5. Когда абонент 1 получает три последовательные посылки от абонента 2 с установленным битом Ack, он понимает, что абонент 2 правильно принял его LCW.
  6. Абонент 1 передает свое LCW с установленным битом Ack 6—8 раз для гарантии, что диалог завершен полностью.
  7. В результате оба абонента получают информацию о своем партнере и могут выбрать тот режим работы, который обеспечит наилучшие характеристики обмена.

В соответствии с этим алгоритмом действуют оба абонента, участвующие в автодиалоге. Как видно, здесь реализуется механизм многократного взаимного подтверждения, что существенно повышает надежность передачи данных об аппаратуре абонентов. При этом также легко детектируются ошибочные ситуации, например, неисправности аппаратуры абонентов, нарушения целостности кабеля, несовместимость аппаратуры абонентов и т.д.
Для реализации функции следующей страницы используется бит NP . Если оба абонента устанавливают его в своих LCW, то есть оба они поддерживают эту функцию, то между ними может быть произведен дополнительный обмен информацией такими же 16-разрядными словами, но с другим форматом. В этих словах 11 битов отводится на информацию, а пять битов используются как служебные. В частности, это позволяет производить более полную диагностику аппаратуры, а также выявлять повышенный уровень помех в линии связи.
Вероятно, в дальнейшем принцип автодиалога будет совершенствоваться, включая в себя другие стандарты и типы сети, давая возможность разрешения все новых задач. Но его реализация в принципе невозможна при стандартной топологии шина, поэтому, скорее всего, доля шинных сегментов (10BASE2 и 10BASE5) будет все больше сокращаться. И в новых сетях (Fast Ethernet, Gigabit Ethernet) шинные сегменты вряд ли появятся.
http://localhost:3232/img/empty.gif

 
На главную | Содержание | < Назад....Вперёд >
С вопросами и предложениями можно обращаться по nicivas@bk.ru. 2013 г.Яндекс.Метрика