учебники, программирование, основы, введение в,

 

Средства System V IPC. Организация работы с разделяемой памятью в UNIX. Понятие нитей исполнения (thread)

Преимущества и недостатки потокового обмена данными.
На предыдущем семинаре мы познакомились с механизмами, обеспечивающими потоковую передачу данных между процессами в операционной системе UNIX, а именно с pip'ами и FIFO. Потоковые механизмы достаточно просты в реализации и удобны для использования, но имеют ряд существенных недостатков:

  • Операции чтения и записи не анализируют содержимое передаваемых данных. Процесс, прочитавший 20 байт из потока, не может сказать, были ли они записаны одним процессом или несколькими, записывались ли они за один раз или было, например, выполнено 4 операции записи по 5 байт. Данные в потоке никак не интерпретируются системой. Если требуется какая-либо интерпретация данных, то передающий и принимающий процессы должны заранее согласовать свои действия и уметь осуществлять ее самостоятельно.
  • Для передачи информации от одного процесса к другому требуется, как минимум, две операции копирования данных: первый раз – из адресного пространства передающего процесса в системный буфер, второй раз – из системного буфера в адресное пространство принимающего процесса.
  • Процессы, обменивающиеся информацией, должны одновременно существовать в вычислительной системе. Нельзя записать информацию в поток с помощью одного процесса, завершить его, а затем, через некоторое время, запустить другой процесс и прочитать записанную информацию.

Понятие о System V IPC
Указанные выше недостатки потоков данных привели к разработке других механизмов передачи информации между процессами. Часть этих механизмов, впервые появившихся в UNIX System V и впоследствии перекочевавших оттуда практически во все современные версии операционной системы UNIX, получила общее название System V IPC (IPC – сокращение от interprocess communications). В группу System V IPC входят: очереди сообщений, разделяемая память и семафоры. Эти средства организации взаимодействия процессов связаны не только общностью происхождения, но и обладают схожим интерфейсом для выполнения подобных операций, например, для выделения и освобождения соответствующего ресурса в системе. Мы будем рассматривать их в порядке от менее семантически нагруженных с точки зрения операционной системы к более семантически нагруженным. Иными словами, чем позже мы начнем заниматься каким-либо механизмом из System V IPC, тем больше действий по интерпретации передаваемой информации придется выполнять операционной системе при использовании этого механизма. Часть этого семинара мы посвятим изучению разделяемой памяти. Семафоры будут рассматриваться на семинаре 8, а очереди сообщений – на семинаре 9.
Пространство имен. Адресация в System V IPC. Функция ftok()
Все средства связи из System V IPC, как и уже рассмотренные нами pipe и FIFO, являются средствами связи с непрямой адресацией. Как мы установили на предыдущем семинаре, для организации взаимодействия неродственных процессов с помощью средства связи с непрямой адресацией необходимо, чтобы это средство связи имело имя. Отсутствие имен у pip'ов позволяет процессам получать информацию о расположении pip'а в системе и его состоянии только через родственные связи. Наличие ассоциированного имени у FIFO – имени специализированного файла в файловой системе – позволяет неродственным процессам получать эту информацию через интерфейс файловой системы.
Множество всех возможных имен для объектов какого-либо вида принято называть пространством имен соответствующего вида объектов. Для FIFO пространством имен является множество всех допустимых имен файлов в файловой системе. Для всех объектов из System V IPC таким пространством имен является множество значений некоторого целочисленного типа данных – key_t – ключа. Причем программисту не позволено напрямую присваивать значение ключа, это значение задается опосредованно: через комбинацию имени какого-либо файла, уже существующего в файловой системе, и небольшого целого числа – например, номера экземпляра средства связи.
Такой хитрый способ получения значения ключа связан с двумя соображениями:

  • Если разрешить программистам самим присваивать значение ключа для идентификации средств связи, то не исключено, что два программиста случайно воспользуются одним и тем же значением, не подозревая об этом. Тогда их процессы будут несанкционированно взаимодействовать через одно и то же средство коммуникации, что может привести к нестандартному поведению этих процессов. Поэтому основным компонентом значения ключа является преобразованное в числовое значение полное имя некоторого файла, доступ к которому на чтение разрешен процессу. Каждый программист имеет возможность использовать для этой цели свой специфический файл, например исполняемый файл, связанный с одним из взаимодействующих процессов. Следует отметить, что преобразование из текстового имени файла в число основывается на расположении указанного файла на жестком диске или ином физическом носителе. Поэтому для образования ключа следует применять файлы, не меняющие своего положения в течение времени организации взаимодействия процессов;
  • Второй компонент значения ключа используется для того, чтобы позволить программисту связать с одним и тем же именем файла более одного экземпляра каждого средства связи. В качестве такого компонента можно задавать порядковый номер соответствующего экземпляра.

Получение значения ключа из двух компонентов осуществляется функцией ftok().


Функция для генерации ключа System V IPC
Прототип функции
#include <sys/types.h>
#include <sys/ipc.h>
key_t ftok(char *pathname, char proj);
Описание функции
Функция ftok служит для преобразования имени существующего файла и небольшого целого числа, например, порядкового номера экземпляра средств связи, в ключ System V IPC.
Параметр pathname должен являться указателем на имя существующего файла, доступного для процесса, вызывающего функцию.
Параметр proj – это небольшое целое число, характеризующее экземпляр средства связи.
В случае невозможности генерации ключа функция возвращает отрицательное значение, в противном случае она возвращает значение сгенерированного ключа. Тип данных key_t обычно представляет собой 32-битовое целое.

Еще раз подчеркнем три важных момента, связанных с использованием имени файла для получения ключа. Во-первых, необходимо указывать имя файла, который уже существует в файловой системе и для которого процесс имеет право доступа на чтение (не путайте с заданием имени файла при создании FIFO, где указывалось имя для вновь создаваемого специального файла). Во-вторых, указанный файл должен сохранять свое положение на диске до тех пор, пока все процессы, участвующие во взаимодействии, не получат ключ System V IPC. В-третьих, задание имени файла, как одного из компонентов для получения ключа, ни в коем случае не означает, что информация, передаваемая с помощью ассоциированного средства связи, будет располагаться в этом файле. Информация будет храниться внутри адресного пространства операционной системы, а заданное имя файла лишь позволяет различным процессам сгенерировать идентичные ключи.
Дескрипторы System V IPC
Мы говорили (см. семинар 5 раздел «Файловый дескриптор» ), что информацию о потоках ввода-вывода, с которыми имеет дело текущий процесс, в частности о pip'ах и FIFO, операционная система хранит в таблице открытых файлов процесса. Системные вызовы, осуществляющие операции над потоком, используют в качестве параметра индекс элемента таблицы открытых файлов, соответствующего потоку, – файловый дескриптор. Использование файловых дескрипторов для идентификации потоков внутри процесса позволяет применять к ним уже существующий интерфейс для работы с файлами, но в то же время приводит к автоматическому закрытию потоков при завершении процесса. Этим, в частности, объясняется один из перечисленных выше недостатков потоковой передачи информации.
При реализации компонентов System V IPC была принята другая концепция. Ядро операционной системы хранит информацию обо всех средствах System V IPC, используемых в системе, вне контекста пользовательских процессов. При создании нового средства связи или получении доступа к уже существующему процесс получает неотрицательное целое число – дескриптор (идентификатор) этого средства связи, которое однозначно идентифицирует его во всей вычислительной системе. Этот дескриптор должен передаваться в качестве параметра всем системным вызовам, осуществляющим дальнейшие операции над соответствующим средством System V IPC.
Подобная концепция позволяет устранить один из самых существенных недостатков, присущих потоковым средствам связи – требование одновременного существования взаимодействующих процессов, но в то же время требует повышенной осторожности для того, чтобы процесс, получающий информацию, не принял взамен новых старые данные, случайно оставленные в механизме коммуникации.

Разделяемая память в UNIX. Системные вызовы shmget(), shmat(), shmdt()
С точки зрения операционной системы, наименее семантически нагруженным средством System V IPC является разделяемая память (shared memory). Мы уже упоминали об этой категории средств связи на лекции. Для текущего семинара нам достаточно знать, что операционная система может позволить нескольким процессам совместно использовать некоторую область адресного пространства. Внутренние механизмы, позволяющие реализовать такое использование, будут подробно рассмотрены на лекции, посвященной сегментной, страничной и сегментно-страничной организации памяти.
Все средства связи System V IPC требуют предварительных инициализирующих действий (создания) для организации взаимодействия процессов.
Для создания области разделяемой памяти с определенным ключом или доступа по ключу к уже существующей области применяется системный вызов shmget(). Существует два варианта его использования для создания новой области разделяемой памяти.

  • Стандартный способ. В качестве значения ключа системному вызову поставляется значение, сформированное функцией ftok() для некоторого имени файла и номера экземпляра области разделяемой памяти. В качестве флагов поставляется комбинация прав доступа к создаваемому сегменту и флага IPC_CREAT. Если сегмент для данного ключа еще не существует, то система будет пытаться создать его с указанными правами доступа. Если же вдруг он уже существовал, то мы просто получим его дескриптор. Возможно добавление к этой комбинации флагов флага IPC_EXCL. Этот флаг гарантирует нормальное завершение системного вызова только в том случае, если сегмент действительно был создан (т. е. ранее он не существовал), если же сегмент существовал, то системный вызов завершится с ошибкой, и значение системной переменной errno, описанной в файле errno.h, будет установлено в EEXIST.
  • Нестандартный способ. В качестве значения ключа указывается специальное значение IPC_PRIVATE. Использование значения IPC_PRIVATE всегда приводит к попытке создания нового сегмента разделяемой памяти с заданными правами доступа и с ключом, который не совпадает со значением ключа ни одного из уже существующих сегментов и который не может быть получен с помощью функции ftok() ни при одной комбинации ее параметров. Наличие флагов IPC_CREAT и IPC_EXCL в этом случае игнорируется.

Системный вызов shmget()
Прототип системного вызова
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget(key_t key, int size,
int shmflg);
Описание системного вызова
Системный вызов shmget предназначен для выполнения операции доступа к сегменту разделяемой памяти и, в случае его успешного завершения, возвращает дескриптор System V IPC для этого сегмента (целое неотрицательное число, однозначно характеризующее сегмент внутри вычислительной системы и использующееся в дальнейшем для других операций с ним).
Параметр key является ключом System V IPC для сегмента, т. е. фактически его именем из пространства имен System V IPC. В качестве значения этого параметра может использоваться значение ключа, полученное с помощью функции ftok(), или специальное значение IPC_PRIVATE. Использование значения IPC_PRIVATE всегда приводит к попытке создания нового сегмента разделяемой памяти с ключом,который не совпадает со значением ключа ни одного из уже существующих сегментов и который не может быть получен с помощью функции ftok() ни при одной комбинации ее параметров.
Параметр size. определяет размер создаваемого или уже существующего сегмента в байтах. Если сегмент с указанным ключом уже существует, но его размер не совпадает с указанным в параметре size, констатируется возникновение ошибки.
Параметр shmflg – флаги – играет роль только при создании нового сегмента разделяемой памяти и определяет права различных пользователей при доступе к сегменту, а также необходимость создания нового сегмента и поведение системного вызова при попытке создания. Он является некоторой комбинацией (с помощью операции побитовое или – «|») следующих предопределенных значений и восьмеричных прав доступа:

  • IPC_CREAT – если сегмента для указанного ключа не существует, он должен быть создан;
  • IPC_EXCL – применяется совместно с флагом IPC_CREAT. При совместном их использовании и существовании сегмента с указанным ключом, доступ к сегменту не производится и констатируется ошибочная ситуация, при этом переменная errno, описанная в файле <errno.h>, примет значение EEXIST;
  • 0400 – разрешено чтение для пользователя, создавшего сегмент;
  • 0200 – разрешена запись для пользователя, создавшего сегмент;
  • 0040 – разрешено чтение для группы пользователя, создавшего сегмент;
  • 0020 – разрешена запись для группы пользователя, создавшего сегмент;
  • 0004 – разрешено чтение для всех остальных пользователей;
  • 0002 – разрешена запись для всех остальных пользователей.

Возвращаемое значение
Системный вызов возвращает значение дескриптора System V IPC для сегмента разделяемой памяти при нормальном завершении и значение -1 при возникновении ошибки.

Доступ к созданной области разделяемой памяти в дальнейшем обеспечивается ее дескриптором, который вернет системный вызов shmget(). Доступ к уже существующей области также может осуществляться двумя способами:

  • Если мы знаем ее ключ, то, используя вызов shmget(),можем получить ее дескриптор. В этом случае нельзя указывать в качестве составной части флагов флаг IPC_EXCL, а значение ключа, естественно, не может быть IPC_PRIVATE. Права доступа игнорируются, а размер области должен совпадать с размером, указанным при ее создании.
  • Либо мы можем воспользоваться тем, что дескриптор System V IPC действителен в рамках всей операционной системы, и передать его значение от процесса, создавшего разделяемую память, текущему процессу. Отметим, что при создании разделяемой памяти с помощью значения IPC_PRIVATE – это единственно возможный способ.

После получения дескриптора необходимо включить область разделяемой памяти в адресное пространство текущего процесса. Это осуществляется с помощью системного вызова shmat(). При нормальном завершении он вернет адрес разделяемой памяти в адресном пространстве текущего процесса. Дальнейший доступ к этой памяти осуществляется с помощью обычных средств языка программирования.


Системный вызов shmat()
Прототип системного вызова
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
char *shmat(int shmid, char *shmaddr,
int shmflg);
Описание системного вызова
Системный вызов shmat предназначен для включения области разделяемой памяти в адресное пространство текущего процесса. Данное описание не является полным описанием системного вызова, а ограничивается рамками текущего курса. Для полного описания обращайтесь к UNIX Manual.
Параметр shmid является дескриптором System V IPC для сегмента разделяемой памяти, т. е. значением, которое вернул системный вызов shmget() при создании сегмента или при его поиске по ключу.
В качестве параметра shmaddr в рамках нашего курса мы всегда будем передавать значение NULL, позволяя операционной системе самой разместить разделяемую память в адресном пространстве нашего процесса.
Параметр shmflg в нашем курсе может принимать только два значения: 0 – для осуществления операций чтения и записи над сегментом и SHM_RDONLY – если мы хотим только читать из него. При этом процесс должен иметь соответствующие права доступа к сегменту.
Возвращаемое значение
Системный вызов возвращает адрес сегмента разделяемой памяти в адресном пространстве процесса при нормальном завершении и значение -1 при возникновении ошибки.

После окончания использования разделяемой памяти процесс может уменьшить размер своего адресного пространства, исключив из него эту область с помощью системного вызова shmdt(). Отметим, что в качестве параметра системный вызов shmdt() требует адрес начала области разделяемой памяти в адресном пространстве процесса, т. е. значение, которое вернул системный вызов shmat(), поэтому данное значение следует сохранять на протяжении всего времени использования разделяемой памяти.


Системный вызов shmdt()
Прототип системного вызова
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
int shmdt(char *shmaddr);
Описание системного вызова
Системный вызов shmdt предназначен для исключения области разделяемой памяти из адресного пространства текущего процесса.
Параметр shmaddr является адресом сегмента разделяемой памяти,т. е. значением, которое вернул системный вызов shmat().
Возвращаемое значение
Системный вызов возвращает значение 0 при нормальном завершении и значение -1 при возникновении ошибки.

Прогон программ с использованием разделяемой памяти
Для иллюстрации использования разделяемой памяти давайте рассмотрим две взаимодействующие программы.

Эти программы очень похожи друг на друга и используют разделяемую память для хранения числа запусков каждой из программ и их суммы. В разделяемой памяти размещается массив из трех целых чисел. Первый элемент массива используется как счетчик для программы 1, второй элемент – для программы 2, третий элемент – для обеих программ суммарно. Дополнительный нюанс в программах возникает из-за необходимости инициализации элементов массива при создании разделяемой памяти. Для этого нам нужно, чтобы программы могли различать случай, когда они создали ее, и случай, когда она уже существовала. Мы добиваемся различия, используя вначале системный вызов shmget() с флагами IPC_CREAT и IPC_EXCL. Если вызов завершается нормально, то мы создали разделяемую память. Если вызов завершается с констатацией ошибки и значение переменной errno равняется EEXIST, то, значит, разделяемая память уже существует, и мы можем получить ее IPC дескриптор, применяя тот же самый вызов с нулевым значением флагов. Наберите программы, сохраните под именами 06-1а.с и 06-1b.c cоответственно, откомпилируйте их и запустите несколько раз. Проанализируйте полученные результаты.

Команды ipcs и ipcrm
Как мы видели из предыдущего примера, созданная область разделяемой памяти сохраняется в операционной системе даже тогда, когда нет ни одного процесса, включающего ее в свое адресное пространство. С одной стороны, это имеет определенные преимущества, поскольку не требует одновременного существования взаимодействующих процессов, с другой стороны, может причинять существенные неудобства. Допустим, что предыдущие программы мы хотим использовать таким образом, чтобы подсчитывать количество запусков в течение одного, текущего, сеанса работы в системе. Однако в созданном сегменте разделяемой памяти остается информация от предыдущего сеанса, и программы будут выдавать общее количество запусков за все время работы с момента загрузки операционной системы. Можно было бы создавать для нового сеанса новый сегмент разделяемой памяти, но количество ресурсов в системе не безгранично. Нас спасает то, что существуют способы удалять неиспользуемые ресурсы System V IPC как с помощью команд операционной системы, так и с помощью системных вызовов. Все средства System V IPC требуют определенных действий для освобождения занимаемых ресурсов после окончания взаимодействия процессов. Для того чтобы удалять ресурсы System V IPC из командной строки, нам понадобятся две команды, ipcs и ipcrm.
Команда ipcs выдает информацию обо всех средствах System V IPC, существующих в системе, для которых пользователь обладает правами на чтение: областях разделяемой памяти, семафорах и очередях сообщений.


Команда ipcs
Синтаксис команды
ipcs [-asmq] [-tclup]
ipcs [-smq] -i id
ipcs -h
Описание команды
Команда ipcs предназначена для получения информации о средствах System V IPC, к которым пользователь имеет право доступа на чтение.
Опция -i позволяет указать идентификатор ресурсов. Будет выдаваться только информация для ресурсов, имеющих этот идентификатор.
Виды IPC ресурсов могут быть заданы с помощью следующих опций:
  • –s для семафоров;
  • -m для сегментов разделяемой памяти;
  • -q для очередей сообщений;
  • -a для всех ресурсов (по умолчанию).

Опции [-tclup] используются для изменения состава выходной информации. По умолчанию для каждого средства выводятся его ключ, идентификатор IPC, идентификатор владельца, права доступа и ряд других характеристик. Применение опций позволяет вывести:

  • -t времена совершения последних операций над средствами IPC;
  • -p идентификаторы процесса, создавшего ресурс, и процесса, совершившего над ним последнюю операцию;
  • -c идентификаторы пользователя и группы для создателя ресурса и его собственника;
  • -l системные ограничения для средств System V IPC;
  • -u общее состояние IPC ресурсов в системе.

Опция -h используется для получения краткой справочной информации.

Из всего многообразия выводимой информации нас будут интересовать только IPC идентификаторы для средств, созданных вами. Эти идентификаторы будут использоваться в команде ipcrm, позволяющей удалить необходимый ресурс из системы. Для удаления сегмента разделяемой памяти эта команда имеет вид:
ipcrm shm <IPC идентификатор>
Удалите созданный вами сегмент разделяемой памяти из операционной системы, используя эти команды.


Команда ipcrm
Синтаксис команды
ipcrm [shm | msg | sem] id
Описание команды
Команда ipcrm предназначена для удаления ресурса System V IPC из операционной системы. Параметр id задает IPC идентификатор для удаляемого ресурса, параметр shm используется для сегментов разделяемой памяти, параметр msg – для очередей сообщений, параметр sem – для семафоров.

Если поведение программ, использующих средства System V IPC, базируется на предположении, что эти средства были созданы при их работе, не забывайте перед их запуском удалять уже существующие ресурсы.
Использование системного вызова shmctl() для освобождения ресурса
Для той же цели – удалить область разделяемой памяти из системы – можно воспользоваться и системным вызовом shmctl(). Этот системный вызов позволяет полностью ликвидировать область разделяемой памяти в операционной системе по заданному дескриптору средства IPC, если, конечно, у вас хватает для этого полномочий. Системный вызов shmctl() позволяет выполнять и другие действия над сегментом разделяемой памяти, но их изучение лежит за пределами нашего курса.


Системный вызов shmctl()
Прототип системного вызова
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl(int shmid, int cmd,
struct shmid_ds *buf);
Описание системного вызова
Системный вызов shmctl предназначен для получения информации об области разделяемой памяти, изменения ее атрибутов и удаления из системы. Данное описание не является полным описанием системного вызова, а ограничивается рамками текущего курса. Для изучения полного описания обращайтесь к UNIX Manual.
В нашем курсе мы будем пользоваться системным вызовом shmctl только для удаления области разделяемой памяти из системы. Параметр shmid является дескриптором System V IPC для сегмента разделяемой памяти, т. е. значением, которое вернул системный вызов shmget() при создании сегмента или при его поиске по ключу.
В качестве параметра cmd в рамках нашего курса мы всегда будем передавать значение IPC_RMID – команду для удаления сегмента разделяемой памяти с заданным идентификатором. Параметр buf для этой команды не используется, поэтому мы всегда будем подставлять туда значение NULL.
Возвращаемое значение
Системный вызов возвращает значение 0 при нормальном завершении и значение -1 при возникновении ошибки.

Разделяемая память и системные вызовы fork(), exec() и функция exit()
Важным вопросом является поведение сегментов разделяемой памяти при выполнении процессом системных вызовов fork(), exec() и функции exit().
При выполнении системного вызова fork() все области разделяемой памяти, размещенные в адресном пространстве процесса, наследуются порожденным процессом.
При выполнении системных вызовов exec() и функции exit() все области разделяемой памяти, размещенные в адресном пространстве процесса, исключаются из его адресного пространства, но продолжают существовать в операционной системе.
Самостоятельное написание, компиляция и запуск программы для организации связи двух процессов через разделяемую память.
Для закрепления полученных знаний напишите две программы, осуществляющие взаимодействие через разделяемую память. Первая программа должна создавать сегмент разделяемой памяти и копировать туда собственный исходный текст, вторая программа должна брать оттуда этот текст, печатать его на экране и удалять сегмент разделяемой памяти из системы.

Понятие о нити исполнения (thread) в UNIX. Идентификатор нити исполнения. Функция pthread_self()
На лекции 4 мы говорили, что во многих современных операционных системах существует расширенная реализация понятия процесс, когда процесс представляет собой совокупность выделенных ему ресурсов и набора нитей исполнения. Нити процесса разделяют его программный код, глобальные переменные и системные ресурсы, но каждая нить имеет собственный программный счетчик, свое содержимое регистров и свой стек. Поскольку глобальные переменные у нитей исполнения являются общими, они могут использовать их, как элементы разделяемой памяти, не прибегая к механизму, описанному выше.
В различных версиях операционной системы UNIX существуют различные интерфейсы, обеспечивающие работу с нитями исполнения. Мы кратко ознакомимся с некоторыми функциями, позволяющими разделить процесс на thread'ы и управлять их поведением, в соответствии со стандартом POSIX. Нити исполнения, удовлетворяющие стандарту POSIX, принято называть POSIX thread'ами или, кратко, pthread'ами.
К сожалению, операционная система Linux не полностью поддерживает нити исполнения на уровне ядра системы. При создании нового thread'а запускается новый традиционный процесс, разделяющий с родительским традиционным процессом его ресурсы, программный код и данные, расположенные вне стека, т.е. фактически действительно создается новый thread, но ядро не умеет определять, что эти thread'ы являются составными частями одного целого. Это «знает» только специальный процесс-координатор, работающий на пользовательском уровне и стартующий при первом вызове функций, обеспечивающих POSIX интерфейс для нитей исполнения. Поэтому мы сможем наблюдать не все преимущества использования нитей исполнения (в частности, ускорить решение задачи на однопроцессорной машине с их помощью вряд ли получится), но даже в этом случае thread'ы можно задействовать как очень удобный способ для создания процессов с общими ресурсами, программным кодом и разделяемой памятью.
Каждая нить исполнения, как и процесс, имеет в системе уникальный номер – идентификатор thread'a. Поскольку традиционный процесс в концепции нитей исполнения трактуется как процесс, содержащий единственную нить исполнения, мы можем узнать идентификатор этой нити и для любого обычного процесса. Для этого используется функция pthread_self(). Нить исполнения, создаваемую при рождении нового процесса, принято называть начальной или главной нитью исполнения этого процесса.


Функция pthread_self()
Прототип функции
#include <pthread.h>
pthread_t pthread_self(void);
Описание функции
Функция pthread_self возвращает идентификатор текущей нити исполнения.
Тип данных pthread_t является синонимом для одного из целочисленных типов языка C.

Создание и завершение thread'а. Функции pthread_create(), pthread_exit(), pthread_join()
Нити исполнения, как и традиционные процессы, могут порождать нити-потомки, правда, только внутри своего процесса. Каждый будущий thread внутри программы должен представлять собой функцию с прототипом
void *thread(void *arg);
Параметр arg передается этой функции при создании thread'a и может, до некоторой степени, рассматриваться как аналог параметров функции main(), о которых мы говорили на семинарах 3–4. Возвращаемое функцией значение может интерпретироваться как аналог информации, которую родительский процесс может получить после завершения процесса-ребенка. Для создания новой нити исполнения применяется функция pthread_create().


Функция для создания нити исполнения
Прототип функции
#include <pthread.h>
int pthread_create(pthread_t *thread,
pthread_attr_t *attr,
void * (*start_routine)(void *),
void *arg);
Описание функции
Функция pthread_create служит для создания новой нити исполнения (thread'а) внутри текущего процесса. Настоящее описание не является полным описанием функции, а служит только целям данного курса. Для изучения полного описания обращайтесь к UNIX Manual.
Новый thread будет выполнять функцию start_routine с прототипом
void *start_routine(void *)
передавая ей в качестве аргумента параметр arg. Если требуется передать более одного параметра, они собираются в структуру, и передается адрес этой структуры. Значение, возвращаемое функцией start_routine не должно указывать на динамический объект данного thread'а.
Параметр attr служит для задания различных атрибутов создаваемого thread'а. Их описание выходит за рамки нашего курса, и мы всегда будем считать их заданными по умолчанию, подставляя в качестве аргумента значение NULL.
Возвращаемые значения
При удачном завершении функция возвращает значение 0 и помещает идентификатор новой нити исполнения по адресу, на который указывает параметр thread. В случае ошибки возвращается положительное значение (а не отрицательное, как в большинстве системных вызовов и функций!), которое определяет код ошибки, описанный в файле <errno.h>. Значение системной переменной errno при этом не устанавливается.

Мы не будем рассматривать ее в полном объеме, так как детальное изучение программирования с использованием thread'ов не является целью данного курса.
Важным отличием этой функции от большинства других системных вызовов и функций является то, что в случае неудачного завершения она возвращает не отрицательное, а положительное значение, которое определяет код ошибки, описанный в файле <errno.h>. Значение системной переменной errno при этом не устанавливается. Результатом выполнения этой функции является появление в системе новой нити исполнения, которая будет выполнять функцию, ассоциированную со thread'ом, передав ей специфицированный параметр, параллельно с уже существовавшими нитями исполнения процесса.
Созданный thread может завершить свою деятельность тремя способами:

  • С помощью выполнения функции pthread_exit(). Функция никогда не возвращается в вызвавшую ее нить исполнения. Объект, на который указывает параметр этой функции, может быть изучен в другой нити исполнения, например, в породившей завершившийся thread. Этот параметр, следовательно, должен указывать на объект, не являющийся локальным для завершившегося thread'а, например, на статическую переменную;
  • С помощью возврата из функции, ассоциированной с нитью исполнения. Объект, на который указывает адрес, возвращаемый функцией, как и в предыдущем случае, может быть изучен в другой нити исполнения, например, в породившей завершившийся thread, и должен указывать на объект, не являющийся локальным для завершившегося thread'а;
  • Если в процессе выполняется возврат из функции main() или где-либо в процессе (в любой нити исполнения) осуществляется вызов функции exit(), это приводит к завершению всех thread'ов процесса.

Функция для завершения нити исполнения
Прототип функции
#include <pthread.h>
void pthread_exit(void *status);
Описание функции
Функция pthread_exit служит для завершения нити исполнения (thread) текущего процесса.
Функция никогда не возвращается в вызвавший ее thread. Объект, на который указывает параметр status, может быть впоследствии изучен в другой нити исполнения, например в нити, породившей завершившуюся нить. Поэтому он не должен указывать на динамический объект завершившегося thread'а.

Одним из вариантов получения адреса, возвращаемого завершившимся thread'ом, с одновременным ожиданием его завершения является использование функции pthread_join(). Нить исполнения, вызвавшая эту функцию, переходит в состояние ожидание до завершения заданного thread'а. Функция позволяет также получить указатель, который вернул завершившийся thread в операционную систему.


Функция pthread_join()
Прототип функции
#include <pthread.h>
int pthread_join (pthread_t thread,
void **status_addr);
Описание функции
Функция pthread_join блокирует работу вызвавшей ее нити исполнения до завершения thread'а с идентификатором thread. После разблокирования в указатель, расположенный по адресу status_addr, заносится адрес, который вернул завершившийся thread либо при выходе из ассоциированной с ним функции, либо при выполнении функции pthread_exit(). Если нас не интересует, что вернула нам нить исполнения, в качестве этого параметра можно использовать значение NULL.
Возвращаемые значения
Функция возвращает значение 0 при успешном завершении. В случае ошибки возвращается положительное значение (а не отрицательное, как в большинстве системных вызовов и функций!), которое определяет код ошибки, описанный в файле <errno.h>. Значение системной переменной errno при этом не устанавливается.

Прогон программы с использованием двух нитей исполнения
Для иллюстрации вышесказанного давайте рассмотрим программу, в которой работают две нити исполнения.
Листинг 6.2. Программа 06-2.c для иллюстрации работы двух нитей исполнения.
Для сборки исполняемого файла при работе редактора связей необходимо явно подключить библиотеку функций для работы с pthread'ами, которая не подключается автоматически. Это делается с помощью добавления к команде компиляции и редактирования связей параметра -lpthread – подключить библиотеку pthread. Наберите текст, откомпилируйте эту программу и запустите на исполнение.
Обратите внимание на отличие результатов этой программы от похожей программы, иллюстрировавшей создание нового процесса (раздел «Прогон программы с fork() с одинаковой работой родителя и ребенка»), которую мы рассматривали на семинарах 3-4. Программа, создававшая новый процесс, печатала дважды одинаковые значения для переменной a, так как адресные пространства различных процессов независимы, и каждый процесс прибавлял 1 к своей собственной переменной a. Рассматриваемая программа печатает два разных значения, так как переменная a является разделяемой, и каждый thread прибавляет 1 к одной и той же переменной.
Написание, компиляция и прогон программы с использованием трех нитей исполнения.
Модифицируйте предыдущую программу, добавив к ней третью нить исполнения.
Необходимость синхронизации процессов и нитей исполнения, использующих общую память
Все рассмотренные на этом семинаре примеры являются не совсем корректными. В большинстве случаев они работают правильно, однако возможны ситуации, когда совместная деятельность этих процессов или нитей исполнения приводит к неверным и неожиданным результатам. Это связано с тем, что любые неатомарные операции, связанные с изменением содержимого разделяемой памяти, представляют собой критическую секцию процесса или нити исполнения. Вспомните рассмотрение критических секций в лекции 5.
Вернемся к рассмотрению программ из раздела «Прогон программ с использованием разделяемой памяти». При одновременном существовании двух процессов в операционной системе может возникнуть следующая последовательность выполнения операций во времени:
...
Процесс 1: array[0] += 1;
Процесс 2: array[1] += 1;
Процесс 1: array[2] += 1;
Процесс 1: printf(
"Program 1 was spawn %d times,
program 2 - %d times, total - %d times\n",
array[0], array[1], array[2]);
...
Тогда печать будет давать неправильные результаты. Естественно, что воспроизвести подобную последовательность действий практически нереально. Мы не сможем подобрать необходимое время старта процессов и степень загруженности вычислительной системы. Но мы можем смоделировать эту ситуацию, добавив в обе программы достаточно длительные пустые циклы перед оператором array[2] += 1; Это проделано в следующих программах.
Наберите программы, сохраните под именами 06-3а.с и 06-3b.c cоответственно, откомпилируйте их и запустите любую из них один раз для создания и инициализации разделяемой памяти. Затем запустите другую и, пока она находится в цикле, запустите, например, с другого виртуального терминала, снова первую программу. Вы получите неожиданный результат: количество запусков по отдельности не будет соответствовать количеству запусков вместе.
Как мы видим, для написания корректно работающих программ необходимо обеспечивать взаимоисключение при работе с разделяемой памятью и, может быть, взаимную очередность доступа к ней. Это можно сделать с помощью рассмотренных в лекции 6 алгоритмов синхронизации, например, алгоритма Петерсона или алгоритма булочной.
Задача повышенной сложности: модифицируйте программы из этого раздела для корректной работы с помощью алгоритма Петерсона.
На следующем семинаре мы рассмотрим семафоры, которые являются средством System V IPC, предназначенным для синхронизации процессов.

 

 
На главную | Содержание | < Назад....Вперёд >
С вопросами и предложениями можно обращаться по nicivas@bk.ru. 2013 г.Яндекс.Метрика