учебники, программирование, основы, введение в,

 

Робототехнические системы с элементами искусственного интеллекта


Область робототехники
Робототехника, очувствление, искусственный интеллект, робот-станок, механизм параллельной структуры, электродвигатели безредукторные, высокомоментные, обобщенные координаты.
Область робототехники охватывает достаточно широкий класс машин, начиная от простейших игрушек до полностью автоматизированных производств (Автоматически управляемая электростанция, беспилотные космические корабли, автоматические подводные аппараты, ЭВМ, играющая в шахматы — все эти системы можно считать роботами). Поэтому, что называть роботом, к сожалению, не определено окончательно. В представленных лекциях уделим основное внимание промышленным роботам, в которых присутствуют элементы интеллектуальной деятельности.
Создание "разумных" роботов связано, как правило, с приданием им человеческих качеств. Это способность распознавать образы, участвовать в игровых операциях, ставить задачи и принимать решения. Поэтому в дальнейших лекциях остановимся более подробно на детальном рассмотрении подсистем низшего уровня, выполняющих технологические операции обработки деталей, и связь данных подсистем с подсистемами высшего уровня.
Применение вычислительной техники в системах управления и программного обеспечения позволяет реализовать интеллектуальные способности человека и заменить его в сфере оценки ситуации и принятия решений. Совокупность интеллектуальных и механических способностей робототехнической системы позволяет заменить человека в сфере его производственной деятельности.
Искусственный интеллект промышленных ИРС, рассмотренных в лекции 1, заключается в возможности распознавать детали и их поверхности с точки зрения качества и соответствия заданным геометрическим размерам по чертежу, управлять технологическим процессом и принимать решения по его изменению. В свою очередь принятие решения включает формирование промежуточных целей для выполнения поставленной задачи.
Но все вышесказанное не означает, что роль человека будет состоять только том, чтобы наслаждаться работой робототехнических систем, пребывая в полной бездеятельности. Напротив его ответственность возрастает и потребуется колоcсальная нагрузка на человека, чтобы управлять сложными системами, создавать новые механизмы и обезопасить себя от любых техногенных катастроф.
Современная быстродействующая вычислительная техника позволила качественно изменить структуру технологического оборудования. Во-первых, благодаря высокому быстродействию вычислений появилась возможность осуществлять управление механизмами, в которых перемещения не совпадают с координатами обрабатываемой детали. Например, высоко скоростные прямолинейные перемещения можно выполнять с помощью вращательных пар. Во-вторых, быстродействующие средства контроля дали возможность построить системы оперативной настройки режимов обработки, получая информацию об обрабатываемой поверхности.
В робототехнике системы очувствления и искусственного интеллекта нашли достаточно широкое применение. Следует выделить следующие направления развития интеллектуальных роботов:
  1. Промышленные роботы, работающие в производственной сфере и заменяющие человека при выполнении технологических операций. Интеллект указанных роботов заключается в их способности автоматически распознавать качество обработанной поверхности, контролировать режимы обработки и корректировать их в зависимости от поставленной цели, например, минимизировать погрешности, уменьшать энергозатраты, выбирать технологию обработки в зависимости от типа детали и требований к ее выходным характеристикам. В настоящее время это, пожалуй, основной класс роботов, которому должно быть уделено особое внимание, так как замена человека в сфере производства качественно изменит его жизнедеятельность
  2. Безусловно к сугубо интеллектуальным роботам следует отнести робото-тележки, перемещающиеся по космическим планетам в условиях непредсказуемой обстановки и выполняющие операции сбора информации о местности, на основе которой они определяют направление своего движения.
  3. Игровые роботы, предназначенные для тренировки спортсменов. Роботы, играющие в гольф, теннис, шахматы, соревнующиеся друг с другом, на первый взгляд указанные роботы не предназначены для замены человека на производстве. Однако, как и в человеческой деятельности, при выполнении игровых задач отрабатывается структура искусственных машин, их силовые возможности, быстродействие и интеллектуальные способности.
  4. Специальные роботы, способные работать в военной обстановке, а также в условиях особо опасных для жизнедеятельности человека.

ИРС для выполнения производственных задач, так называемые роботы-станки, являются устройствами, которые полностью автоматизируют производство по выпуску определенного вида продукции. Данное оборудование оснащается системами контроля технологических и выходных параметров обрабатываемого изделия.
В станочном оборудовании предъявляются достаточно высокое требования к точности, надежности и ответственности выполняемой операции. При выполнении операций обработки и сборки сложных деталей невозможно требовать вероятностного результата. Как правило, такие операции строго детерминированы. Поэтому вероятностные поисковые методы возможны только на стадии обработки результатов. Принятие окончательного решения должно обеспечивать детерминированный результат, обеспечивающий поставленную цель.
Особенно высокие требования предъявляются при обработке поверхностей сложной формы. В этом случае необходимо более точное выполнение режимов обработки, контроль износа инструмента в процессе обработки и обеспечение одновременно нескольких параметров детали. В частности, для каждой точки поверхности нужно одновременно обеспечивать до шести геометрических параметров, не считая качества поверхности. Для сложных поверхностей, кроме требований к самим координатам, накладываются условия и на их производные.
Для соблюдения высоких требований к точности изготовления деталей необходимо осуществлять постоянный контроль геометрических параметров станка, размеров звеньев, температурных изменений и других параметров. Применение механизмов параллельной структуры также качественно меняет подход к проектированию станочного робототехнического оборудования.
Понятие робот-станок было введено в 1992 году при описании станочного оборудования, построенного на механизмах параллельной структуры и позволяющего посредством одного и того же механизма выполнять транспортные операции и операции обработки. Данные механизмы позволяют расширить функциональные возможности станочного оборудования и при наличии системы управления, оснащенной элементами искусственного интеллекта, делает данное оборудование близким к интеллектуальным роботам.
Совмещение функций особенно актуально для сложных высокоточных операций, когда требуется обработка детали от одной базы. В данном случае получаем универсальное оборудование, позволяющее выполнять несколько различных технологических операций для широкой номенклатуры изделий.
Главной отличительной особенностью робота-станка от обрабатывающего центра является универсальность, точнее, более богатые кинематические возможности перемещения механизма. Безусловно, из набора роботов-станков можно построить распределенный обрабатывающий центр. Механизмы параллельной структуры расширили возможности исполнительных механизмов станков, сделали их более облегченными и универсальными. Наличие параллельных кинематических цепей позволяет управлять одним выходным звеном по нескольким параллельным каналам, обеспечивая одновременное управление по положению, скорости, более высоким производным, а также по силе. В работе приведены, хотя и не в полном объеме, механизмы параллельной структуры, которые с успехом можно применить в станочном оборудовании.
Последующие лекции ставят своей целью показать место интеллектуальных систем в сфере промышленной робототехники. При этом роботы представляются в виде технологических систем, непосредственно выполняющих операцию обработки. Мы их называем роботами-станками, так как их кинематическая схема позволяет выполнять транспортные операции и непосредственно обработку. Применение механизмов параллельной структуры уже на низшем уровне позволяет расширить интеллектуальные возможности технологических машин.

Структура и состав интеллектуальной робототехнической системы.
Интеллектуальная робототехническая система включает объект управления совместно со средой, в которой она работает. Объект управления представляет непосредственно механизмы перемещения инструмента и изделия. В состав манипуляторов входят исполнительные двигатели, которые осуществляют их перемещение по заданным законам RД и RИ. Информация о положении выходных звеньев манипуляторов определяется датчиками, расположенными в шарнирах звеньев манипуляторов, которые получают информации о выходных координатах механизмов перемещения, их скоростях, ускорениях и силах. Основная функция системы управления манипуляторами состоит в формировании законов перемещения исполнительными механизмами манипуляторов в реальном времени UИ(t) и UД(t). Данные системы обычно работают в следящем режиме, обеспечивающем выполнение каждой степенью подвижности манипуляторов заданной траектории перемещения с требуемыми точностью, скоростью и усилием. Выходными координатами манипуляторов являются RД и RИ. В результате взаимодействия инструмента с деталью создается усилие P(t), которое воздействует на исполнительные органы манипуляторов. Применительно к рассматриваемой системе в качестве объекта управления и внешней среды следует рассматривать манипуляторы перемещения изделия, инструмента и непосредственно сам технологический процесс.
На не раскрывается состав подсистемы управления высшего уровня. Ее структура и выполняемые функции подробно описаны в лекции 1. Общим информационным управляющим каналом на систему управления низшего уровня является канал передачи управляющих сигналов U(t) и обратной связью от системы низшего уровня - сигнал R(t). Управляющее воздействие U(t) представляет выбранную программу действия из некоторого множества U U(t) и соответствующую заданной детали, либо обработке заданной поверхности детали. Какую из программ следует выбрать, решается системой высшего уровня как на основе информации от системы распознавания поверхности, так и на основе указаний оператора, управляющего робототехнической системой. Выбранная программа U(t) задается непрерывно в реальном масштабе времени.
Обратная связь R(t) может нести полную информацию о работе системы управления низшего уровня в виде логических сигналов о ее состоянии, непрерывную информацию о геометрических размерах, качестве обработки поверхности детали и информацию о состоянии внешней среды, например, о температуре окружающей среды или двигателей, о состоянии сопутствующих обработке других устройств.
Представленная на система является обобщенной для технологических машин широкого назначения. Более детальное представление данной системы рассмотрим на примере системы управления робота-станка). Отличительной особенностью рассматриваемой следящей системы управления от существующих станочных систем является наличие главной обратной связи по результату обработки поверхности (вычисление ДAi*(t)). Вычисление ДAi*(t) осуществляется в системе координат детали решением прямой задачи о положении F(qинф.) по информации датчиков, располагаемых в сочленениях звеньев механизма. Погрешность ε вычисляется сравнением программного значения управляющего воздействия ДAi(t) и вычисленного реального его значения ДAi*(t). Обратный Якобиан J-1 и устройство K выполняют функции преобразования и решения линейной задачи вычисления приращений обобщенных координат qi. Суммируя приращения на каждом шаге вычисления с предыдущим значением, формируется управляющее воздействие на исполнительные приводы qi.
В качестве электродвигателей приводов манипуляторов применяются безредукторные и высокомоментные электродвигатели. Это требует применения методики синтеза приводов с учетом переменности моментов инерции, а для многостепенной механической системы требуется также учитывать взаимовлияние приводов по степеням подвижности.
Подсистема управления высшего уровня выполняет следующие функции. Получая информацию от оптической системы о состоянии обрабатываемой поверхности и ее геометрических размерах, данная подсистема выбирает требуемую программу обработки из некоторого детерминированного множества программ либо при ее отсутствии на основе анализа принимает наиболее близкую по критерию точности воспроизведения требуемой поверхности.
Оптические средства контроля геометрических размеров припуска и качества обработки (шероховатости) поверхности детали позволяют оптимизировать режимы резания. В работе приведено описание оптической системы, построенной с применением специальной решетки и источника монохроматического света. В настоящем курсе лекций дается описание данной системы, рассматриваются вопросы построения системы распознавания зон с заданным качеством обработки и формирования на этой основе новой программы обработки поверхности.
Формирование программной траектории перемещения инструмента относительно обрабатываемой поверхности ДАi(t), производится на основе информации, полученной от оптической системы контроля поверхности и экспертной оценки при выборе режимов обработки. (В лекции 7 был рассмотрен пример выбора режимов и программы обработки в среде CLIPS). Информация о геометрических размерах полученной после обработки поверхности контролируется оптической системой контроля. Эта система формирует также данные о качестве обрабатываемой поверхности. В зависимости от этой информации выбирается ограниченная область обработки поверхности.
Математическая модель объекта управления совместно с окружающей средой, формируемая в системе высшего уровня на основе информации, получаемой от датчиков, включает: чертеж детали с реальными геометрическими размерами, чертеж требуемой идеальной детали и набор параметров, определяющих режимы обработки. Указанная модель позволяет, проигрывая различные ситуации, представляющие набор процедур для выполнения обработки, выбирать цель и формировать программу обработки U(t).
Пример робота-станка
Пример робота-станка, построенного на механизмах параллельной структуры и оснащенного интеллектуальной системой обработки информации и управления, показан на. Исполнительный механизм робота-станка включает манипулятор перемещения изделия, представляющий пятизвенник, состоящий из звеньев 10, 11, 12, 13 и основания, манипулятор перемещения инструмента, который представляет собой два звена, управляемых двигателями 1 и 4 с вертикальной осью вращения. Манипулятор перемещения изделия осуществляет управляемое перемещение по четырем координатам с помощью четырех исполнительных приводов 2, 3, 8 и 14. Обработка выполняется путем взаимного перемещения инструмента 6 относительно изделия 9. Для стабилизации и удержания веса манипулятора перемещения изделия применено пневматическое устройство 16. Бабка для вращения изделия 15 и бабка для инструмента 5 содержат исполнительные приводы для вращения инструмента 7 и изделия 8. В целом механизм относительного перемещения робота-станка позволяет выполнять взаимное перемещение инструмента и изделия по шести координатам.
В механизмах параллельной структуры имеются кинематические пары, которые выполняют функции преобразования движения и не содержат исполнительных силовых элементов (пятизвенник в манипуляторе перемещения изделия). В сочленениях данных пар возможна установка дополнительных датчиков, позволяющих повысить точность контроля положения выходного звена. Кроме того, установка в этих сочленениях дополнительных приводов, управляемых, к примеру, по силе, разгружает основные приводы, выполняющие перемещения по заданным координатам, и позволяет по одной и той же координате управлять положением, скоростью и силой.
Пример кинематической схемы робота-станка приведен для лучшего понимания работы реальной интеллектуальной робототехнической системы, чтобы показать место установки датчиков и дополнительных приводов в механизме.
В рассматриваемом курсе лекций мы не рассматриваем вопросы работы мехатронных элементов в составе интеллектуальной робототехнической системы. Безусловно, аппаратная часть системы управления робота-станка содержит мехатронные элементы. Это непосредственно оптическая система, которая включает механические элементы преобразования оптического изображения и цифровую систему обработки изображения. Встраиваемые исполнительные приводы совместно с датчиками положения также представляют мехатронные системы восприятия и преобразования информации.

 
На главную | Содержание | < Назад....Вперёд >
С вопросами и предложениями можно обращаться по nicivas@bk.ru. 2013 г.Яндекс.Метрика